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On Entropic Reduction of Fluctuations
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We point out that there is no general relation between ground state degeneracy
and finite-temperature fluctuations for tilted interfaces.
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1. INTRODUCTION

In a celebrated paper [D], Dobrushin proved that at low temperature, the
horizontal interface of the three dimensional Ising model is rigid. The
uniqueness of the ground state plays a predominant role in the proof
because the rigidity comes from the fact that the fluctuations of the inter-
face are not strong enough to destroy the ground state. This picture of a
unique ground state slightly deformed is expected to fail when the tem-
perature increases: entropy should take over, leading to a rough interface
above the roughening transition. The analysis of ground states for tilted
interfaces in 3D was a long standing open problem which has been solved
recently by R. Kenyon for the interface orthogonal to the vector (1, 1, 1)
(see [Ke1, Theorem 15]). In fact, the works of Kenyon concern the com-
binatorics of dimer models and the implications of his results are going
far beyond the characterization of the 3D interfaces for Ising model at
zero temperature (see [Ke2] and references therein). The ground states
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associated to the interface orthogonal to the vector (1, 1, 1) are degenerate,
and Kenyon proved in [Ke2] that a related model (domino tiling) con-
verges in the thermodynamic limit to a Gaussian field (the same proof
should also imply a similar statement for the ground states). Therefore, it
is tempting to argue that an increase of the temperature, i.e., an addition
of entropy, would lead to more fluctuations. One could believe that the
fluctuations at low temperature are mainly driven by the degeneracy of
the ground states and that there should exist some general monotonicity
principle which would answer this question. For example, one could be
tempted to use correlation inequalities, in the spirit of the proof of rigidity
of the horizontal interface due to H. van Beijeren [vB].

Nevertheless such a picture does not seem to hold in full generality.
Consider now the interface orthogonal to the vector (1, 1, 0) obtained by
imposing the boundary conditions

1 if i } (1, 1, 0)�0 and |i3 |�N
_� i={&1 if i } (1, 1, 0)<0 and |i3 |�N

0 if |i3 |>N

outside the cube [i # Z3 : |ik |�N, k=1, 2, 3]. By _� i=0 we mean that the
boundary condition at the site i is free. Notice that the interface is tighten
only on two opposite edges of the cube, and free on the two other sides.
Then at zero temperature this model reduces to a 2 dimensional model for
which the fluctuations are known to be of order - N. However, the physi-
cal intuition would say that at finite temperature the system should behave
completely differently and fluctuate like - ln(N ). This would say that the
ground state fluctuations should play only a limited role in the fluctuations
of the interface which, at least in this example, should be driven only by
entropy. In fact the effect of the entropy seems to be even more drastic in
dimension 4 where no fluctuations should pertain at positive temperature
for the interface orthogonal to the vector (1, 1, 0, 0). Notice that in dimen-
sion 4 (for a different choice of boundary conditions), the rigidity of the
tilted interface has been derived by Messager and Miracle-Sole [MM] by
means of correlations inequalities.

There are many examples of systems with infinitely degenerated
ground-states, only a finite number of which survive at positive tempera-
ture, see e.g., [BS], but the mechanism at play in the situation we consider
in this note is very different.

In the low temperature regime and for small tilt, the interface of the
3D Ising model can be approximated, at least on a heuristic level, by a gas
of lines which cannot intersect. For this model, the logarithmic fluctuations
of the correlations were derived by Pra� hofer and Spohn in [PS]. This
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would indicate that at positive temperature, the transversal excitations
reduce the amplitude of the fluctuations of the interface (see also [S1, S2]
for related phenomena). In order to emphasize the lack of a general
monotonicity property for the amplitude of the fluctuations, we are going
to prove this entropic stabilization phenomenon for an effective interface
model in dimension d+1�3 which shares features similar to the Ising
model (including FKG inequalities . . .).

For any finite domain 4/Zd, we define the Hamiltonian

H 84c
4 (84)= :

itj

&(.i&.j ) (1)

where & : R � R+ is a convex function, 84=[.i ] i # 4 . The heights 84c out-
side 4 are fixed. The Gibbs measure associated to this Hamiltonian will be
denoted by

+84c
4, ;(d84)=

1
Z84c

4, ;

exp(&;H 84c
4 (84)) 6i # 4 d.i (2)

where the parameter ; plays the role of the inverse of the temperature and
d. denotes the Lebesgue measure. As explained before, we are mainly
interested in the interface orthogonal to the vector (1, 1, 0,..., 0). We denote
by +;, N the Gibbs measure on the domain 4N=[&N+1,..., N&1]d with
tilted boundary conditions on the sides |i1|=N

\(i2 ,..., id ), .N, i2 ,..., id
=N, and .&N, i2 ,..., id

=&N

and free (or periodic) boundary conditions on the other sides.
To give core to the previous heuristic, the most natural effective model

should have been the SOS model (&(x)=|x| ). However, only few results
have been obtained about the fluctuations of this model, because the
singularity of the interaction does not allow to use the techniques based on
strict convexity of the potential. In the case of 0 boundary conditions,
Bricmont, Fontaine, Lebowitz [BFL] analyzed the fluctuations by means
of infrared bounds, but the latter estimates rely on a transfer matrix
method which does not seem to be suitable for our choice of boundary
conditions. Therefore, we will consider an alternative model which has the
same features but with a quadratic potential at infinity. Let & be

&(x)={ |x|
x2�2

if x # [&2, 2]
if x # [&2, 2]c (3)
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The ground state of this model is described by the limit of (2) as
; � �, i.e., by the uniform measure on all configurations of the field com-
patible with the boundary conditions, and satisfying

v .i=.j when i1= j1 ;

v .i&2�.j�.i , when i1= j1+1.

Before stating the result we observe that, by the symmetries of the model
+;, N(.0)=0 for any ; # (0, �).

Theorem 1.1. 1. For ;=�, in any dimension greater or equal to 2,

+�, N(.2
0)=

N
2

+O(- N)

2. For any 0<;<�, there exists C1>0 and C2=C2(d )<� such
that

+;, N(.2
0)�C1 log N

in dimension 2, and

+;, N(.2
0)�C2

in higher dimensions.

2. ZERO-TEMPERATURE FLUCTUATIONS

We prove here part 1 in Theorem 1.1. In this case the only coordinate
along which a nontrivial behavior appears is the first one and we will
employ the reduced description of the model [.i ] i=&N,..., N , interpreted as
a collection of random variables (under the uniform measure introduced
above).

Let [Xi ] i # Z be an IID sequence of variables which are uniformly dis-
tributed on [&1, +1] and for n>&N set Sn=�n

i=&N X i and S&N=0.
Let us denote by fI , I a finite subset of [&N+1, &N+2,...], the density
of [Sn]n # I . The random vector [Sn]n=&N+1,..., N&1 admits a regular condi-
tional density given SN : it is

f (s&N+1 ,..., sN&1 | sN)#1[ fN (sN ){0]
f&N+1,..., N(s&N+1 ,..., sN)

fN(sN)
(4)

We now observe that f (s&N+1 ,..., sN&1 | 0) is the density of the random
vector [.i&i ] i=&N+1,..., N&1 . By the Markov property and by the symmetry
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of the Xi 's we obtain that the density of .0 is equal to [ f0( } )]2� fN(0). We
now apply a Local Limit Theorem for densities ([P, p. 214]) to obtain
that - N fN(0)=(1�2- ?)+O(1�- N) and that there exists c such that

|- N f0(x - N)& g(x)|�
c

- N(1+x2)
(5)

where g is the density of the standard Gaussian. This in particular implies
that the variance of .0 is N�2+O(- N).

3. UPPER BOUND AT FINITE ;

We adapt the decimation procedure introduced in [BLL] in the case
of the interface orthogonal to the vector (1, 1, 0,..., 0). The key step is con-
tained in the following Theorem based on Brascamp-Lieb inequality [BL].

Theorem 3.1. [BLL] Let & : R � R+ be a convex function such
that there are positive constants A, B, C, D, E

(1) 0<A�&"(x)�B<�, \ |x|�E.

(2) |&(x)&Cx2|�D<�, \x.

Then the function g defined by

g( y1 ,..., yk)=&ln \|R

exp \& :
k

i=1

&( yi&z)+ dz+ (6)

is of the form

g( y1 ,..., yk)=a :
i, j

( yi& yj )
2+h( y1 ,..., yk) (7)

where a is a positive constant and the function h is convex. Notice that the
quadratic interaction involves every pair (i, j ).

The potential & in (3) has been designed to satisfy the previous
assumptions. Following [BLL], we partition the domain 4N into 2 sets
4even

N , 4odd
N containing the even and the odd sites. A site i=(i1 ,..., id ) is said

to be odd (resp. even) if �d
k=1 ik is odd (resp. even). We will also denote

by Y4N
even=[ yi ]4 N

even the heights 84N
restricted to the even lattice.
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A straight application of Theorem 3.1 implies that the measure restricted
to even sites is a Gibbs measure with Hamiltonian

H even
4N

(Y4 N
even)=a :

itj

( yi& yj )
2+F(Y4 N

even)

where the constant a is positive and F is a convex function. The interac-
tions concern only the nearest neighbors on the sublattice 4even

N , i.e., those
which are V-connected on Zd. One can choose F such that the boundary
conditions remain unchanged: just include in F the interactions between
points of the even lattice and the boundary. We now use the Brascamp-
Lieb inequality to dominate the variance +;, N(.2

0) with the variance at the
origin of the Gaussian model on even sites with Hamiltonian H even

4N
(Y4 N

even)
=a �itj ( yi& yj )

2 and boundary conditions which are y\N, i2 ,..., id
=0

(when (\N, i2 ,..., id ) is even) and free (or periodic) on the other sides. The
variance of this Gaussian field has of course the stated behavior.
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